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• Brief summary of iFP
– Model: Hybrid ion-VFP and fluid electrons
– Nonlinearly implicit solver
– Adaptive and conservative phase-space grid

• MIT exploding pusher experiments
– IC and BC

• Results and discussions
– YOC in good agreement
– Inferred temperature also closer to experiment



iFP: A hybrid 1D2V VFP code for spherical 
implosion simulations of ICF capsules
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• Hybrid VFP ion (arbitrary species) and fluid electron with 
quasi-neutrality and ambipolarity

• 1D2V spherical radial and cylindrical velocity space 

• Electrostatic (Ohm’s law)
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Nonlinearly implicit time-stepping and adaptive phase-space grid
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• Nonlinearly implicit Solver:
– Δ𝑡!"#~𝑂 10$%& 𝑛𝑠 (dynamically irrelevant)
– 𝜏'()~𝑂 10$* 𝑛𝑠

• Adaptive and conservative phase-space grid
– Static uniform grid : 𝑂 10%& unknowns in 1D2V
– Adaptive grid : 𝑂 10+ unknowns 
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The implementation is massively parallel and scalable as well

5/19/21 |   5Los Alamos National Laboratory

Nv
104 105

C
PU

 [s
ec

]

104

106

108

Implicitprec
O(Nv)
Explicit
O(N2

v) More than 4 orders of 
magnitude more efficient 
than explicit methods.

This ratio will scale 
arbitrarily large with Δ𝑣
and Δ𝑡!"#/𝜏'()

W.T. Taitano et al., JCP 297 (2015)



iFP has been benchmarked rigorously against a broad suite of 
analytical and semi-analytical theory

• Correct self-similar solution1 obtained for t>>τcol
• Test of implicit solver with Δt = 4x104 τcol

• Successfully benchmarked against VPIC2
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1. K. Molvig et al., PRL 113 (2014)
2. Yin et al, Phys. Plasmas, 23, 112302 (2016)



M=1.5 Multispecies Shock (fluid regime)
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B. Keenan et al., Phys. Rev. Lett., submitted (2017)

M=1.5 Multispecies Shock (fluid regime)
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B. Keenan et al., Phys. Rev. E, 96 (2018)



M=5 Multispecies Shock (fluid regime)
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Figure 2: (Color online). Temperature profiles (a) and deuterium
enrichment (b) for an M = 5 shock.

have the electron energy equation:

@x̂

✓
3

2
p̂e0T̂e � ̂e@x̂T̂e

◆
+ p̂e0

T̂e

V̂
@x̂V̂ = ⌫̂ei

⇣
T̂i � T̂e

⌘
,

(1)
where V̂ ⌘ ⇢0/⇢, p̂e0 is the electron pressure in the upstream
normalized by the total upstream pressure, ̂e is the normal-
ized electron thermal conductivity coefficient, T̂i is the sin-
gle ion temperature, ⌫̂ei is an electron-ion energy exchange
frequency, x̂ is the distance normalized to the DD mean-free-
path in the upstream, and all other quantities are normalized to
their respective upstream values. Next, we have an equation
for the ion mass density:

2�M2
⇣
V̂ � 1

⌘⇣
V̂1 � V̂

⌘
+

3

2
⌘̂V̂ @x̂V̂ ⇡ ̂e@x̂T̂e, (2)

where ⌘̂ is the normalized ion viscosity cofficient, V̂1 ⌘
⇢0/⇢1, � = 5/3 is the adiabatic index. Formally,
the right-hand-side of Eq. (2) includes the ion heat
and differential mass diffusion fluxes, but our hydro
simulations indicate that the electron thermal conductivity
term, ̂e@x̂T̂e, dominates.

The electron and ion temperatures inside the shock front
scale as M2, since they are of order the downstream temper-
ature. Next, we note that ⌫̂ei(T̂i � T̂e) in Eq. (1) scales as

1/M2, since ⌫̂ei / M�4. This expression is generally smaller
than the left-hand-side of the equation, owing to the fact that
⌫̂ei contains a factor of

q
me
mD

and the energy exchange be-
tween ions and electrons is not the primary heating mecha-
nism within the imbedded shock. For this reason, we ignore
the energy exchange term in Eq. (1), to obtain:


3

2
+ ln(V̂ )

�
p̂e0T̂e� � ̂e@x̂T̂e ⇡ const , (3)

where we have used the fact that the electron temperature
within the shock, denoted by T̂e�, is approximately con-
stant [9]. The integration constant is effectively zero, as fol-
lows from the upstream boundary condition. Additionally,
1/4  V̂  1. Given these considerations, and the fact that
T̂e� / M2, we conclude that ̂e@x̂T̂e must also scale as M2.

We now turn our attention to Eq. (2). The coefficient of ion
viscosity, ⌘̂, scales as M6. We may re-write Eq. (2) as:

dx̂

dV̂
⇡

3
2 ⌘̂V̂

̂e@x̂T̂e � 2�M2(V̂ � 1)(V̂1 � V̂ )
, (4)

from which we may conclude that dx̂/dV̂ scales as M4,
which is the Mach number dependence found in Refs. [13, 14]
for strong shocks using the Mott-Smith ansatz. Normalizing
this to the downstream mean-free-path introduces a factor of
1/M4, indicating that the normalized shock width:

SW ⌘ 1

V̂1T̂ 2
1

ˆ
V̂=

V̂1
0.9

V̂= 1
1.2

dx̂

dV̂
dV̂ , (5)

does not scale with M , and therefore reaches a finite asymp-
totic value as M ! 1, which is in agreement with Ref. [12].

To integrate this equation, we first note that the electron
temperature within the imbedded shock is approximately con-
stant. For the portion of the pre-heat layer nearest to the up-
stream, ln(V̂ ) ⇡ ⌫̂ei(T̂i � T̂e) ⇡ 0, and thus we may directly
obtain the electron temperature in the pre-heat layer from Eq.
(1) as [6]:

T̂e(x̂) ⇡

15

4

p̂e0
̂e0

(x̂� x̂0) + 1

� 2
5

, (6)

where ̂e0 ⌘ ̂e|x̂=x̂0 , and x̂0 is the position of the up-
stream edge of the pre-heat layer. To obtain T̂e�, we evalu-
ate Eq. (6) at the location of the imbedded shock, which is at
x̂� x̂0 = x̂pre�heat ⇠ �eevthe/(u0�US

DD
), where �US

DD
is the

ion-ion mean-free-path in the upstream. The exact value of
x̂pre�heat, which depends on c0, M , etc., is unknown. Con-
sequently, we slightly tweak T̂e� to best fit the results from
full multi-ion hydro simulations. An expression for T̂e� al-
lows us to estimate [22] ⌘̂ / T̂ 5/2

i
and ̂e@x̂T̂e, and we are

then able to obtain the hydro shock width as a function of M
and c0 using Eqs. (4) and (5).

In Fig. 3a, we present this result for M ! 1 and M = 5
as functions of c0. The semi-analytic curve for M = 5,

Keenan et al., PRE, 96 (2017)
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Spherical Guderley problem
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Taitano et al., Comp. Phys. Comm., 263 (2021)



LILAC simulations 
are used to initialize and drive iFP simulations 
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• nH, uH, vth,H all obtained from 
radhydro simulation at Lagrangian
zone inside the pusher

• iFP is driven by time-dependent Maxwellian 
with rad-hydro state variables:

fiFP,B =
nH

⇡3/2v3
th,H

e
� (~v�~uH)2

v
2
th,H
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iFP simulation start time
when fuel and shell sufficiently 
ionized

SiO2

DT



Observations: Kinetically enhance pusher mix, as well as fuel 
ballistically streaming out of the core
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Significant mix of glass shell into core at bang time.
lim effects in X-ray image from rad-hydro is not present
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iFP Synthetic Xray Image

lim effects not present 
in kinetic simulations 
(experiments?)



Good agreement in YOC up until the lowest fill pressure
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Inferred (neutron spectrum) ion temperatures in closer agreement with experiments, 
relative to LILAC (driver for iFP), but DUED performs better at  higher fill
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Immediate and future work
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• Isolation of dominant physics that iFP is capturing correctly:
– Interface mixing
– Tail depletion
– Increased heat capacity due to shell mixing

• Missing physics in current simulation:
– Kinetic electrons: 

• Nonlocal electron heat-transport and kinetic instabilities role in implosion dynamics?
• Capability currently being tested in iFP with shot 86639. Numerical issues are being ironed out.

– Electron EOS: 
• For higher fill pressures, could play a role particularly in pusher.

– Self-consistent radiation drive: 
• Currently, testing gray radiation diffusion (for indirect drive).
• Laser driver for direct drive will be more relevant for this collaboration.


